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The decay of perturbations in a radiating gas is analyzed by first carrying out 
complete solutions for the decay of initial sinusoidal perturbations in the tempera- 
ture, gas velocity, and pressure. These sinusoidal perturbations are superposed 
to yield solutions for the decay of initial ‘step’ temperature profiles consisting 
of constant initial temperature perturbations inside finite planar, cylindrical 
and spherical regions, with zero initial temperature perturbations outside. In  
contrast to the sinusoidal case, which may be described by a single radiation 
parameter, the decay of the step profile is determined by both the optical depth 
of the initial profile and the Boltzmann number, which is inversely proportional 
to the blackbody radiative flux. As the limits of zero and infinite Boltzmann 
numbers are approached, constant-density and constant-pressure cooling ex- 
pressions are recovered. For a broad range of intermediate and small Boltzmann 
numbers the cooling proceeds in time from a constant-density process to a 
constant-pressure process. This transition is produced by gasdynamic waves 
generated near the profile edges by the radiative cooling. The temperature near 
the profile centre may increase during the transition period. 

1. Introduction 
The decay of perturbations in a radiating gas has been the subject of a number 

of previous studies. Consideration of a sinusoidal perturbation proportional to 
ei(wt-kx) leads to a characteristic equation, which yields w roots for a fixed wave- 
number k,  or k roots for a fixed frequency w. Analyses of the w roots (time-damped 
case) have been carried out for application to planetary and stellar atmospheres. 
The pure imaginary or ‘thermal’ w root has been studied by Spiegel (1957), 
Goody (1964), Sasamori & London (1966) and Goody & Belton (1967). The addi- 
tional two ‘acoustic’ w roots have been investigated by Golitsyn (1963), Stein & 
Spiegel (1967) and Gille (1968). 

Parallel analyses of the k roots of the characteristic equation (space-damped 
case) have been carried out by Prokof’ev (1957, 1961), Riazantsev (1959) and 
Vincenti & Baldwin (1962). Also, Smith (1957) and Calvert et ul. (1966) have 
studied space-damping by extending Stokes’s (1851) transparent gas analysis 
to crudely account for absorption effects. In addition to solving the charac- 
teristic equation for the k roots. Vincenti & Baldwin (1962) determine the 
relative amplitudes of the sinusoidal terms involving the k roots in order to form 
a complete solution for the problem of a semi-infinite radiating gas bounded by 
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a wall which undergoes sinusoidal oscillations in position and temperature. In  0 2 
of this paper we carry out the corresponding solution for the decay of sinusoidal 
perturbations in an infinite radiating gas by determining the relative amplitudes 
of the sinusoidal terms involving the three w roots. 

Baldwin ( 1962) has superposed space-damped sinusoidal waves to calculate 
the effect of radiative transfer on the propagation of an acoustic disturbance 
produced by impulsive wall motion. This problem has also been studied by 
Lick (1964) and Moore (1966). The disturbance produced by a step input of wall 
radiation was also discussed by Baldwin (1962), with further work carried out 
by Solan & Cohen (1966) and by Cogley (1968). 

In  $ 3 of this paper we superpose time-damped sinusoidal waves to calculate 
the decay of initial ‘step ’ temperature profiles consisting of constant temperature 
perturbations inside finite planar, cylindrical, and spherical regions, with zero 
initial temperature perturbations outside. In  order to carry out specific calcula- 
tions the initial pressure and gas velocity perturbations are taken to be zero, 
althoughother initial conditions could beincluded without complicating the calcu- 
lations to any degree. The calculated temperature decay features and induced 
gas motions shouldbe characteristicofother initial temperature, pressureandvelo- 
city profiles. On the other hand, the pure sinusoidal profile is a special, self-similar 
case which does not exhibit all of the decay features of the ‘superposed profiles ’. 

The step profile decay considered in $ 3  corresponds to the linearized steady 
flow problem of the temperature decrease in a free-mixing jet or wake. This 
correspondence requires that radiative transfer in the transverse direction 
dominates over radiative transfer in the flow direction, a condition which is 
usually valid. The equations for free-mixing flow with radiation have been 
described by Pai (1963), whereas Sforza & Porter (1968) have recently carried out 
calculations for the planar, constant-pressure case, including both radiation and 
heat conduction. Our calculations, which include the effects of pressure and gas 
velocity perturbations, thus represent a generalization of the calculations of 
Sforza & Porter, if heat conduction is neglected in their solution. The pure 
radiative cooling problem (without pressure or velocity perturbations) has also 
been studied by Vetlutski & Onufriev (1962) ,who consider both the linear and 
non-linear situations. 

The non-linear, radiative cooling of the shocked gas produced by a strong 
explosion has been analyzed by Zel’dovich & Raizer (1967). Baltha & Viskanta 
(1968) have also recently investigated the non-linear cooling of a radiating gas 
surrounded by an absorbing cold gas. Since these non-linear analyses do not con- 
sider gasdynamic effects, our linearized calculation should provide qualitative 
information on induced pressure and velocity effects for such problems. 

2. Sinusoidal perturbations 

gas yields the following expressions (see Vincenti & Kruger 1965): 
Linearization of the conservation equations for a radiating, perfect, inviscid 
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and 

where a, = (yRT,)t is the isentropic sound speed in the unperturbed gas, y is the 
ratio of specific heats, T' is the temperature perturbation, and aqF/axi represents 
the divergence of the net radiative flux. The gas velocity and pressure perturba- 
tions may be obtained from the potential function 6 by means of the following 
derivatives 

In  this paper we deal explicitly with T', u;, andp'. The density perturbation may 
be obtained from the equation of state for a perfect gas, i.e. p'/po equals p'/po 
minus T'/T,. The quantities A ,  and A ,  are respectively the isentropic and iso- 
thermal wave operators applied to 4. Equations (1)  and (2) were derived by 
Vincenti & Baldwin (1962), who studied the problem of the propagation of plane 
acoustic waves in a semi-infinite medium bounded by a wall undergoing sinu- 
soidal perturbations in velocity and/or temperature. In  order to point out simi- 
larities to the Vincenti & Baldwin analysis, the radiative decay problem will be 
first solved by using the differential approximation (Eddington approximation) 
for the radiative transfer in a gray gas. 

The following differential equation for 4 is obtained by combining (1)  and (2) 
with the differential approximation for radiative transfer (see Vincenti & Kruger 
1965) 

a2A, + - a a - - 3 ~ : ~  = 0, 
PA, 

at ax, axi (iz) 0 0 ax, axi t (4) 

where a. is the linear absorption coefficient evaluated at  the unperturbed con- 
ditions To and p,. (As discussed in the previous studies, linearization of the equa- 
tion of radiative transfer shows that the variation of the absorption coefficient 
may be neglected to lowest order.) In  (4) Bo represents the Boltzmann number, 
a dimensionless convection-radiation parameter defined by 

where R is the gas constant and 5 is the Stefan-Boltzmann constant. 
Substitution of a sinusoidal perturbation 4 cc ei(wt-kx) into (4) gives a charac- 

teristic equation, which may be solved for either w or L. The characteristic equa- 
tion is cubic in terms of w ,  and quadratic in terms of k2. For the space-damped 
problem treated by Vincenti & Baldwin (1962), w is fixed because the acoustic 
waves are generated at  a wall which is oscillating in position and temperature 
at  the fixed frequency w. Expressed in terms of the dimensionless complex wave 
speeds c = - (ia,/w) L, the quadratic characteristic equation for c2 yields the 
roots f c1 and 2 c2, with c1 representing a 'modified classical' wave and c2 
representing a 'radiation induced' wave (see Vincenti & Baldwin 1962). 

For the decay problem treated in this section, k is fixed. It is convenient to 
work with the non-dimensional frequency CT = ( l/iLao) w and a propagation 
vector k in the direction of the initial sinusoidal disturbance. Substitution of 

9 P L M  40 
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q5 cc exp ( - uka,t + ik . s) into (4) provides the following characteristic equation 

(6) 
for u: 

~3-7~704+g-r = 0, 

where the non-dimensional radiation parameter is given by 

with the subscript ' approx.' signifying that the differential approximation has 
been used. The Bouguer number Bu = a,/k = a0h/27r is a dimensionless para- 
meter which measures the opacity of the gas enclosed within a wavelength h 
of the sinusoidal disturbance. 

Characteristic equations equivalent to (6) have been analyzed by Golitsyn 
(1963), Stein & Spiegel (1967) and Gille (1968). As shown by these authors, the 
cubic equation (6) is appropriate even when the differential approximation and 
gray gas assumption are not made, i.e. linearization of the exact, non-gray 
radiative transfer equation and substitution of sinusoidal solutions yields (6). 
For a gray gas the exact expression for I? is 

where K = l/Buis a non-dimensional wave-number for the sinusoidal disturbance. 
The corresponding non-gray expressions for I' may be obtained from Goody 
(1964) and Gille (1968). 

Equation (8) shows that, for a gray gas, I? is proportional to the blackbody 
emission (as measured by 16/Bo) times an opacity function which measures the 
fraction of the blackbody radiation transferred between the temperature maxima 
and minima. This opacity function, shown in figure 1, has a maximum when 
K = k/a, is of order unity because the maximum transfer of radiant energy will 
occur when the mean free path (l/ao) is of the same order of magnitude as the 
distance ( l /k)  between the temperature peaks in the sinusoidal disturbance. In 
the optically-thick limit (K < 1) radiative transfer is small because emitted radia- 
tion is absorbed close to the point of emission, i.e. the radiation becomes trapped 
within a small fraction of the disturbance wavelength (thus the temperature 
maxima and minima do not directly exchange radiant energy). Radiative transfer 
becomes small in the optically thin limit because the radiation emitted from a 
disturbance wavelength becomes proportional to ~/KBo,  which is small when the 
gas is sufficiently transparent, i.e. when K 9 1/Bo. 

The time-damping situation considered here is simpler than the space- 
damping case studied by Vincenti & Baldwin (1962), because the Boltzmann 
number Bo and the Bouguer number Bu are combined into a single radiation 
parameter I?; in fact, even the non-gray problem involves only a single radiation 
parameter. This result was produced by the choice of a sinusoidal profile for 
the initial disturbance. For a sinusoidal profile the energy absorbed at a point, 
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as well as the energy emitted, is proportional to the local temperature perturba- 
tion at the point (see e.g. Smith 1957 or Golitsyn 1963). Therefore, the decaying 
disturbance retains its sinusoidal shape, and a change in Bu is equivalent to a 
corresponding change in Bo which produces the same net radiation loss (same I?). 
On the other hand, the step profiles considered in $ 3 (or any other non-sinusoidal 
profiles) do not decay through a sequence of self-similar profiles; in addition, 
both the Boltzmann number and the optical width of the initial step profile must 
be considered as separate parameters. 

0.3 - 

- 0 2  - 

- 

I I I 1 1 1 1 1 1  

FIGURE 1. Exact and approximate radiation parameters for a gray gas 
as functions of the non-dimensional wave-number K .  

Let us now examine the roots to (6).  The coefficients of the a terms are such 
that there is one real root a. and a pair of complex conjugate roots a& = aT -t. ig%, 
where a, and a( are real. In  the limits of small and large values of the radiation 
parameter I?, the following values are obtained: 

} (9) 
r .g 1: ao+r, gp+((y-1) /2)r ,  ai+i, 

r % 1: ao+yr,  a T + ( ( y -  i ) / z y 2 )  (i/r), ai+yy-+. 

The roots go, a,, and r~~ vary smoothly between the above limits, as shown in 
figure 2 for y = 9. 

Previous studies of this time-damped case were concerned only with the 
analysis of the three roots (decay frequencies) of the characteristic equation. 
In  the remainder of $ 2  we shall proceed one step further by calculating the 
amplitudes of the terms involving the three decay frequencies, i.e. we shall carry 
out the complete solution for the decay of initial sinusoidal perturbations in 
temperature, velocity and pressure. 

The total solution for the radiative decay of a sinusoidal perturbation consists 
9-2 
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of three exponential terms involving the three decay frequencies cr,, cr+ and r-, 
respectively. Accordingly, the solution for the potential is given by 

(10) 

where Re denotes the real part. The complex non-dimensional amplitudes co 
and C& are determined below in terms of the radiation parameter and the 

$ = Re - (C,e-@okaot + C+e-U+kUot + C-e-u-kaot eik.0 {: I 
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FIGURE 2. Real and imaginary decay frequencies as functions of the 
radiation parameter r; computcd for y = +. 

initial conditions. Substitution of (10) into (3) yields the following relations for 
the perturbation velocity u’ in the k direction and the perturbation pressure p’ : 

(11 )  

(12) 

U’ 

a, 
- = Re {i(c, e-rokaot + c e-u+kaot + e-u_kaot &k.s + - 1 1 7  

6 = Re {y(coco e--aok%t + g +  c+ e-r+kaot + - -  c e-u-kaot ) @ . a  1. 
Po 

The temperature perturbation is represented by 
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where the amplitudes b, and b* are related to the co and cf amplitudes by means 
of (2): 

For the initial conditions we consider the following sinusoidal disturbances: 

T'(s' ') = Re{(bo+b++b-)e ik .S}  = Re{A,eik.s}, 
TO I 

where the amplitudes Aj may be complex to allow for arbitrary phase differences 
between t,he initial sinusoidal disturbances. Perturbations for different wave- 
numbers k may be superposed to obtain solutions for arbitrary initial dis- 
turbances (see $3) .  

Equations (14) and (15) may be solved for the perturbation amplitudes, 
expressed in terms of the roots go, C T ~  and gi, 

The radiative decay of a sinusoidal disturbance is thus given by (11), (12), (13) 
and (16), expressed in terms of the roots go, gr and gi, which may be determined 
from the cubic equation ( 6 )  for any value of the radiation parameter F. 

For the limiting values of go, (rr and ai given in (g), the following sohtions 
are obtained: 

T' 
-- + Re 1 ([A, - (1 - y-l) A3] exp ( - Fkaot) 
T n  ,~ + [( 1 - y-l) A3 cos (ka, t )  + i ( y  - 1) A, sin (ka,t)] 

x exp [ - (y) r k a o t ] )  exp (ik. s ) )  , 

[A2 cos (kaot) - iy-lA3 sin (kaot)] 

x exp [ - (q) Fkaot] exp (ik. s)) , 

PO 
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T' 
-+Re {A, exp ( - yrka0t )  exp (ik . s)), 
TO 

[A, cos (y-.lka,t) + iy-*(A, - A,) sin (y-*kaot)] 

x exp [ - r$) F] exp (ik . s ) ]  ) 

-+Re [ (h,exp ( - yrka0t) + [(A3 - A,) cos (y-frku0t) - iyfrA, sin (y-&ka,t); 
PO 

In  (17) and (18) the omitted terms are of order FAi and A%/I', respectively. 
For the case of no initial velocity or pressure perturbations, (17) and (1 8) represent 
constant-density and constant-pressure cooling, respectively. For planetary 
atmospheres r is much less than unity (see e.g. Gille 1968). On the other hand, 
I' can be of order unity in stellar atmospheres. Also, engineering applications or 
laboratory experiments can involve high temperatures with corresponding I? 
values up to unity or greater. 

The recovery of the constant density solution I' 9 1 was t o  be expected since 
for a sufficiently large cooling rate the gas does not have time to move during the 
cooling period. In  this connexion we note that (1 8) gives a cooling time which is 
of order l/r shorter than the period of the velocity and pressure oscillations. For 
the I' < 1 case the cooling time is much longer (order l/r) than the period of 
velocity and pressure oscillations. From (18) for r 9 1 we also see that pressure 
and velocity perturbations of order A, are induced by the initial temperature 
profile of amplitude A,. These induced pressures and velocities were negligible 
in the I' < 1 case since they were of order FA,. 

For intermediate values of F all three roots ao) a+ and a- will contribute to 
the temperature cooling, Again considering an initial perturbation only in the 
temperature, the amplitude b, is given by the first of (16) with A, = A3 = 0, 
and the relative amplitudes of the terms containing a& are given by 

where 

The factors /3, and pi are plotted in figure 3. For A, = A3 = 0, (16) give 

c*/co = yr k iy,, 

where y, = - + and 3/i = (ao - ar)/2ai. 
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For b, real, the solutions (1 1) through (13) reduce to 
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FIGURE 3. Temperature decay coefficients as functions of the radiation 
parameter T; computed for y = 4. 

3. Radiative decay of step temperature profiles 
The sinusoidal perturbations of 3 2 may be superposed to yield the solution for 

the decay of any initial temperature, velocity, and pressure profiles in a radiating 
gas. In this section we obtain solutions for the decay of planar, cylindrical and 
spherical step temperature profiles. Sample calculations are carried out for planar 
step profiles in a gray gas. 

Consider the decay of a planar step temperature profile, i.e. an initial tem- 
perature perturbation which has the constant value ToA between - xo and + x,, 
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Superposition of the solutions 

I T'(x,t) TO = J-;F(k,t)coskxdk, 

= u(k, t )  sin kxdk, 
a0 

PO 
pm = low @(k, t )  cos kx dk,  

(21) with k .  s = kx 

(22) 

where F ( k , t ) ,  i i ( k , t )  and p ( k ,  t )  correspond to  the right-hand sides of (21) ex- 
clusive of the cos k . s and sink . s factors. At the initial time, F(k,  0 )  = bo( 1 + 2PT). 
Application of Fourier cosine transform theory to the initial temperature profile 
yields the following expression for b,(k) 

bo(lc) = (1 + 2/3,)-lP(k, 0) = (1 + 2/3,)-l- r:ixA cos kx dx 
To 

2A sin kxo 
(23) 

Substitution of bo(k)  into (22) gives the following solution expressed in terms of 
the non-dimensional time 7 = aoaot and optical distance 6 = aox, with go = aozo: 

- - 
7rk( 1 + 2P,) * 

The ,8 factors appearing in (24) are given by (20)  in terms of the d s ,  which are 
determined from the cubic equation (6) involving the radiation parameter I?. 
For a gray gas r ( K )  is given by (S), whereas for a non-gray gas the appropriate r 
function may be obtained from Goody (1964)) Sasamori & London (1966), or 
Gille (1968). 

Equations (24) through (26) contain two independent parameters, Bo and 5,. 
I n  the constant-pressure and constant-density limits, perturbations arise only 
from the cro root, which becomes inversely proportional to Bo. For these limiting 
cases, the Boltzmann number may be absorbed in the time variable 

T = (16/B0)7 = (16/Bo)a0aOt, 

which is proportional to the total amount of energy emitted up to time t. I n  this 
paper we consider all three crroots, which depend on Bo in a complicated manner; 
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therefore the solutions expressed in terms of?  will not be entirely independent 
of Bo. 

Reference to  the integrals (24) through (26) shows that we cannot combine 
Bo and to into a single parameter because the component sinusoidal functions 
are weighted differently for different times and positions. As a result, the profile 
shapes depend on the optical width of the initial step. Also, the step profiles 
decay through a series of non-similar profiles, i.e. the profile shapes vary with 
time. These results may be contrasted with the previous results for pure sinusoidal 
profiles, which depend only on one radiation parameter, and retain their original 
shape throughout the decay period. 

Although the solutions depend on both 5 and to, the term 2 c o s ~ ~ s i n ~ [ ~  
appearing in (24) may be written as sin K ( C ~  + 6) +sin ~ ( g ~  - <); thus the tempera- 
ture perturbation may be expressed as the sum of two contributions, each 
depending only on the optical distance from a discontinuity. Considering the 
solution near the edge of a semi-infinite profile (to + co but f = f ;  - to finite), the 
term involving sin K ( [ ~  + 6) integrates to give a contribution of 4 to  T’/To A, with 
the remaining contribution depending only on g.  It is concluded that calculations 
need be carried out only for the semi-infinite profile, since the solution for a profile 
of total width 2t0  may be obtained by adding the temperature perturbations a t  
the positions [ = to + [ and [ = to - 5 on the semi-infinite profile and subtracting 
unity. This last result simply reflects the fact that a finite step may be con- 
structed from two semi-infinite steps. 

Several limiting forms of (24) may be considered. When Bo-tco, but 
? = (16/Bo)r remaining finite, then r+O, yielding pi-+pr+O and crO-fr. 

The constant pressure solution (27) is the same as that for free mixing flow given 
by Sforza & Porter (1968) if the heat conduction is neglected in their (33). 

I n  the optically thin limit ($ < l) ,  the dominant contribution to the integral 
in (27) arises when K p 1, therefore 

The solution (28) may be obtained directly from the energy equation if constant 
pressure is assumed and if the linearized flux divergence expression for optically 
thin emission is used, i.e. aqF’/axi = 1GaT;T’ for 151 < .&, and zero for 1c1 > to. 

I n  the optically thick limit (to 9 I ) ,  the integral in (27) may be evaluated by 
setting K $ 1.  Thus (1 - K - ~  tan-l K )  + ~ ~ / 3 ,  and 

(29) 

where erf denotes the error function. Equation (29) is the same as the heat 
conduction solution given by Carslaw & Jaeger (1959), if we define an effective 
thermal diffusivity equal to  16a0/3Bocc0. This result was to be expected, since use 
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of the Rosseland diffusion approximation for the flux in an optically thick 
medium reduces the constant-pressure energy equation to the heat conduction 
equation with this same effective thermal diffusivity. This analysis for an 
optically thick medium will not be valid at  very small times, when a temperature 
discontinuity still exists. 

Equations (27) through (29) will give accurate profiles when r ( K )  < 1 for the 
range of K values providing the dominant contribution to the K-integral. It will 
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FIGURE 4. Temperature perturbation profiles for the decay of initial planar step profiles 

with total optical thicknesses ZE,, = 0.2. Computed for a gray gas with y = 3. 

be shown later that these constant-pressure formulas are accurate not only for 
Bo $ 1, but also for the final cooling stages of gases with Bo of order unity or 
smaller. Substitution of y? for i: in (27) through (29) yields constant-density 
solutions, which will be applicable for 30 -+ 0, and also €or the early cooling stages 
of gases with Bo values up to about 20. 

Numerical evaluation of the integral in (24) for a gray gas provides the tempera- 
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ture perturbation profiles shown in figures 4-6. The solid curves were plotted 
by the computer, and the dashed curves were drawn in by hand from calculations 
utilizing the limiting form (27). The curves should be accurate to a fraction of 1 yo 
of the full scale value; however, since only 50 to 100 points were computed for 
each curve, some sharp corners and small wiggles are the result of computer- 
plotting. The rapid variations or waves in the temperature profiles are produced 
by the gas motion, as discussed below in connexion with figures 6-8. 

0.8 

0.6 

a 
0.5 

h 

0.4 

0.3 

0.2 

0.1 

0 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

E 
FIGURE 5.  Temperature perturbation profiles for the decay of initial planar step profiles 

with total optical thicknesses 2& = 2. Computed for a gray gas with y = Q. 

Figure 4 presents perturbation temperature profiles for the relatively thin 
initial profile of optical thickness 2t0 = 0.2. Curves are shown for the non- 
dimensional times i: = 0.1 and 1, with the curves for [ > to at ,7 = 0.1 being 
omitted since they lie near zero and would add confusion to the figure. Because 
there is about 20% absorption within the profile width Zg0, the temperature 
decrease at  constant pressure (Bo + 00) is only about 70 to  80 yo of the decrease 
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given by (28). It is noted that the decaying profiles remain nearly flat, as they 
would for an optically thin gas. The transition from the constant pressure cooling 
for small radiative transfer (large Bo) to  constant density cooling for large 
radiative transfer (small Bo) is clearly illustrated in figure 4. A gas characterized 
by an intermediate Bo value will progress in time from constant density cooling 
to constant pressure cooling. 
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5 
FIGURE 6. Temperature perturbation profiles for the decay of initial planar step profiles 

with total optical thicknesses Z&, = 10. Computed for a gray gas with y = Q. 

Temperature profiles for the intermediate profile width 2c0 = 2 are shown in 
figure 5 .  Comparison with figure 4 shows that the increased absorption results in 
greater profile curvature, as well as a slower temperature decay with time ?. The 
gas in the region 5 > go becomes appreciably heated, resulting in nearly con- 
tinuous profiles a t  ? = 5 .  

For the relatively thick profile 2c0 = 10 shown in figure 6, the profiles are 
continuous for the times ? shown. If (29) is used to compute the constant pressure 
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(Bo+co) curves shown in figure 6, errors of less than five and one percent of 
full scale are obtained for the times 7 = 5 and 50, respectively. (Similar accuracy 
holds for the constant density case.) 

In  order to further illustrate the decay of perturbations, the integrals appear- 
ing in (24) through (26 )  were numerically evaluated for the intermediate Boltz- 
mann number Bo = 5. Figure 7 shows the decay of the initial step temperature 
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FIGURE 7. Temperature perturbation profiles during the decay of an initial planar step 
temperature profile of total optical thickness 2t0 = 2. Computed for a gray gas with Bo = 5 
and y = 3. 

perturbation, with the development and decay of the velocity and pressure 
perturbations being shown in figures 8 and 9, respectively. Radiative transfer 
produces nearly constant density cooling and heating at  very early times, before 
the gas has had time to move. The cooling in the region 5 < to and the heating 
in the region 5 > to sets up a pressure perturbation which varies rapidly in the 
vicinity of the temperature discontinuity. This large positive pressure gradient 
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produces a negative (towards 6 = 0) velocity pulse. In  turn, as the gas motion 
starts to equilibrate the pressure, the temperature perturbations near the dis- 
continuity at < = En will start to approach the values appropriate for constant 
pressure cooling and heating. Thus temperature pulses appear on either side 
of the discontinuity in figure 7. 
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

5 
FIGURE 8. Velocity perturbation profiles during the decay of an initial planar step 
temperature profile of total optical thickness 2& = 2. Computed for a gray gas with 
Bo = 5 and y = Q. 

As time progresses the pressure and velocity perturbations increase and spread 
out to farther distances from The velocity and pressure distributions produce 
a spreading of the temperature pulses; i.e. the gasdynamics produces heating 
and cooling waves travelling inward and outward, respectively, from the dis- 
continuity at speeds approximately equal to the acoustic velocity a,,. These 
waves of gasdynamic origin may be contrasted with the purely thermal cooling 
waves produced in the non-linear problem by the temperature dependence of 
absorption in air; see Zel'dovich & Raizer (1967). 
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= 0, the accumulation of mass results in 
a pressure increase in the core region E < to. On the other hand, mass loss and 
reradiation decrease the pressure in the portion to < < 2t0 of the outer region 
shown in figure 9. The pressure increase near 5 = 0 reduces the inward gas flow 
in the core, whereas the progression of the outward pressure wave leads to 
appreciable inward velocities at large distances (note the T = 10 curve of figure 8). 

After the perturbation pulses reach 
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FIGTJRE 9. Pressure perturbation profiles during the decay of an initial planar step 
temperature profile of total optical thickness 2& = 2 .  Computed for a gray gas with 
Bo = 5 a n d y  = Q. 

The reduction of the negative pressure perturbation in the core results in a 
reflected temperature wave consisting of temperature perturbations which are 
closer to the constant pressure values (cf. figures 5 and 7). This reflected wave 
represents the wave originating from the far discontinuity at E = - &,. As shown 
in figure 7, the local temperature actually increases during the non-dimensional 
time period 7 N 3 to 5 when the waves are passing through the profile centre. 
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At later times the pressure and velocity perturbations decay to zero, with the 
temperature perturbations decaying at nearly constant pressure. 

The gasdynamic transition from constant-density to constant-pressure cooling 
described above corresponds to a linearized analogue of the following sequence 
of events occurring after a strong explosion: radiative cooling and diffusion at 
constant density, followed by the formation and propagation of a blast wave, 
after which radiative cooling occurs at nearly constant pressure; see e.g. 
Zel'dovich & Raizer (1967). For our linearized problem, reference to figures 4-6 
shows that gasdynamic waves and transitions from constant-density to constant- 
pressure cooling will occur for a broad range of intermediate and small Boltzmann 
numbers. Since the waves will travel at  roughly the sound speed a,, waves 
generated at the temperature discontinuities will reach the profile centre at  
approximately the time t* = x,/u,, which gives the non-dimensional transition 
times 7* = 6, and ?* = (16/Bo) 6,. This expression for ?* correlates very well 
with arrival of the wave at  the profile centre, at  which time the temperature curve 
is very nearly midway between the constant-density and constant-pressure 
curves; see figures 4-7. 

The transition time ?* may be compared with the time T c  required for tho 
temperature perturbation at the profile centre to decay to half its initial value. 
Equations (28) and (29) give TC values of approximately 0.7 and 34; for the 
optically thin and thick limits, respectively; therefore, ?*/T, 2: 24$/Bo for 
4, < 1 and ?*/TC II 16/36,Bo for to $ 1. Accordingly, the transition will occur 
before the final stages of cooling for a relatively wide range of Bo values, with 
this range becoming wider as to increases or decreases away from order unity. 

The behaviour of the step profile solutions may be discussed in terms of a 
superposition of sinusoidal waves. When Bo is greater than about 30, r ( K )  5 0.1 
and the sinusoidal solutions for all K values decay at nearly constant pressure; 
therefore, the superposed step profile decays at nearly constant pressure. For 
a given intermediate or small value of Bo, a sufficiently large value of 7 may be 
chosen so that the exponentials in (24) are negligibly small except for K so small 
that r ( K )  < 1; thus the constant-pressure solution is applicable at sufficiently 
large times 7.  

The induced non-dimensional velocity and pressure perturbations are appre- 
ciable for the Bo = 5 case shown in figures 8 and 9. These perturbations increase 
with decreasing Bo. As the strong radiation limit (Bo --f 0 )  is approached, 
Ip'/yp,Al and lu'/u,Al approach the maximum values y-l and y-4, respectively, 
with oscillations and decay of these perturbations occurring over progressively 
longer times (cf. (18) for the sinusoidal case). As given by the equation of state, 
the non-dimensional density perturbation p'/po is equal to p'/po minus T'/T,. 
Thus, for weak radiation (Bo 9 1) the density perturbation follows the tempera- 
ture perturbation, whereas for strong radiation (Bo < l) ,  the density will remain 
nearly constant during the cooling period, and will oscillate and decay over 
longer periods along with the induced pressure perturbation. 

The calculations presented in this section involve several simplifying assump- 
tions and arbitrary conditions. However, these calculations should qualitatively 
describe important features present for other situations. 
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A non-gray gas could be considered by the use of the appropriate non-gray 
radiation parameter F ( k )  in the above calculational procedure. Since r(k) has 
a broader maximum for a non-gray gas (see e.g. Gille 1968)) one would expect that 
the constant-density regime might be more important than for a gray gas; how- 
ever, the general features of the cooling and gasdynamics should be the same. 

Specific calculations were carried out for the case of no initial perturbations 
in the pressure or gas velocity. Of course, for a particular application the appro- 
priate initial conditions are determined by the manner in which the initial 
perturbations are established. In  this general study we could easily add solutions 
for decaying initial pressure and velocity perturbations (with no initial tempera- 
ture perturbations) to the present solutions, however, a brief consideration of 
the problem should be sufficient to  establish the general features. For example, 
an initial pressure perturbation consisting of a positive step profile will produce 
an outward expansion which will tend to  counteract the inward expansion pro- 
duced by the cooling of an initial step temperature perturbation. These expan- 
sions cannot entirely cancel each other since the outward expansion of the initial 
pressure perturbation begins immediately, whereas the inward expansion 
develops as the temperature profile cools. Therefore, the development of gas- 
dynamic waves and the transition from constant-density to constant-pressure 
cooling (when Bo 5 20) should be features of most cooling problems, even when 
initial pressure and velocity perturbations exist. 

Although the calculations of this section were carried out for initial tempera- 
ture profiles given by step functions, the same decay features should be exhibited 
by most initial temperature profiles. (The pure sinusoidal profile considered in 
the preceding section represents an exceptional case.) Initial temperature profiles 
which decrease smoothly from the centre temperature may exhibit more gradual 
expansion waves than do the step profiles, however, the differences are probably 
not great. In  this regard we note that for step profiles of large optical thickness, the 
waves occurring at  late times are induced predominantly by the cooling of 
relatively smooth profiles, since temperature discontinuities exist only at rela- 
tively small times for optically thick profiles. 

The effect of non-planar temperature profiles may be studied by consideration 
of cylindrically and spherically symmetric step profiles. Superposition of sinu- 
soidal solutions in the cylindrically symmetric case consists of integrating 
cos (k.  s) = cos (kr cos 8 )  from 8 = - $7 to in, where 8 is the angle between k 
and the vector s to a particular point, and r = Is1 is the cylindrical radius. Inte- 
gration gives temperature and pressure perturbations proportional to the zeroth- 
order Bessel function Jo(kr). The velocity perturbation involves integration of 
cos 8 sin (kr cos e), which yields a solution proportional to the first-order Bessel 
function J-(kr).  Of course, these elementary solutions may also be obtained (more 
laboriously) from the conservation and transfer equations written in cylindrical 
co-ordinates. 

By following the procedure used for the planar case, we may determine the 
solution for the decay of a cylindrical step profile, i.e. for an initial temperature 
perturbation which has the constant value ToA for 0 < r < ro and zero for 
r r,. Integration of the elementary cylindrical solutions over wave-number lc 

I0 F L M  40 
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gives (22), but with COB kx and sin kx replaced by Jo(kr) and J,(kr), respectively. 
Evaluation of the coefficient bo(k) may be achieved by the use of the Fourier- 
Bessel transform, 

= ( 1 + 2/3,)-' ro AJ1( kr,) . (30) 

Use of this b0(k) gives the following solution expressed in terms of 7 E aoaot and 
= aor (with to I aoro): 

For constant pressure and go < 1, (31) reduces to the thin gas solution (28). 
In the constant pressure, optically thick gas limit, the temperature perturbation 
reduces to 

(34) 
T' T,a + f,sm [exp ( - +w1 JO(4 Jl(K%) d K ,  

0 

which is equivalent to the heat conduction solution given on p. 260 of Carslaw & 
Jaeger (1959). Constant density forms of (28) and (34) are obtained by replacing 
T by y7". 

Solutions for spherically symmetric problems may be constructed by inte- 
grating the sinusoidal functions over the appropriate hemispherical solid angle. 
These integrals over solid angle reduce to integrals of sin 6 cos (Icy cos 6) and 
cos 6' sin 6 sin (Icr cos 6) over 8, where r now denotes the spherical radius. Integra- 
tion yields elementary solutions proportional to 

(kr)-'sin Icr and ( k ~ ) - ~  (sin kr - kr cos kr).  

After applying Fourier sine transform theory to evaluate bo(k),  the following 
solution is obtained 
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where [ = aor is now based on the spherical radius. 

thin gas limit. In the constant pressure, thick gas limit, 
The temperature perturbation (35) reduces to (28) in the constant pressure, 

which is equivalent to the heat conduction solution given on p. 257 of Carslaw tk 
Jaeger (1959). 

Evaluation of the integrals for the cylindrical and spherical cases would yield 
profiles similar to the ones shown in figures 4-9. Three-dimensional effects 
allow progressively more rapid t,ransport of heat and mass in the cylindrical 
and spherical cases, therefore, perturbations will decay progressively faster 
(cf. the conduction solutions shown in Carslaw & Jaeger 1959). 
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